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1.1 INTRODUCTION 

1.1 G e n e r a l  

T h i s  r e p o r t  c o n c l u d e s  t h e  a n a l y s i s  o f  t h e  i n f l i g h t  p e r -  
formance  of t h e  Apollo 14 m i s s i o n  g u i d a n c e ,  n a v i g a t i o n  and 
c o n t r o l  equipment  onboard t h e  l u n a r  module.  The a n a l y s e s  
supp lemen t  t h o s e  p r e s e n t e d  i n  t he  Apollo 1 4  M i s s i o n  R e p o r t  
( r e f e r e n c e  1). T h i s  document was p r e p a r e d  and s u b m i t t e d  
u n d e r  MSC/TRW Task  E-38D, "Guidance and C o n t r o l  Requ i remen t s  
a n d  Eva l u a  t i o n .  '' 
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2.0 SUMARY 

The Guidance, Navigation and Control Systems i n s t a l l e d  i n  the 

Apol lo 14 spacecraf t  performed as expected w i t h  three exceptions. I n  the 
CSM, a l i g h t  on the  en t ry  monitor system malfunctioned and i n  the LM, the 
AGS computer down-moded t o  standby during the f i n a l  phases o f  rendezvous 

and a crack appeared i n  a glass window o f  the AGS data en t r y  and d isp lay  
assembly. I n  add i t ion  dur ing powered descent the landing radar locked up 
i n  an unusual manner. These anomalies are f u l l y  explained i n  the  MSC 
Mission Report (Reference 1). 

This repo r t  contains the resu l t s  o f  add i t iona l  studies which were 
conducted t o  conf i rm the conclusions o f  the  MSC Mission Report and 
contains analyses which were no t  completed i n  time t o  meet the Mission 
Report dead1 i ne. 

The LM IMU data were examined dur ing the  lunar  descent phase f o r  

the purpose o f  est imat ing the system errors  present. 
e r r o r  bu i ld-up was detected and system er ro rs  observed can be eas i l y  
accounted for  using p la t form and instrument misalignments which are we l l  
w i t h i n  the  system uncertainty.  

No anomalous 

AGS sensor data were examined i n  d e t a i l  dur ing coast ing and powered 

f l i g h t .  
was detected dur ing the  mission which prompted a de ta i l ed  examination o f  
the  other instruments. Avai lab le data revealed no anomalous behavior 

from the  other instruments and the observed performance compared favorably 
with p r e f l i g h t  estimates and previous mission data. Cause f o r  the  l a rge  

change i n  d r i f t  r a t e  on the one gyro i s  unknown. 

A higher than normal change i n  d r i f t  r a t e  on one o f  the  gyros 

During the two automatic cont ro l led  periods (P63 and P64) o f  powered 

descent a marked reduct ion i n  RCS fuel  consumption was observed as 
compared w i t h  previous lunar  landings. Incomplete knowledge o f  RCS 
consumption e f fec ts  due t o  software changes incorporated i n  Apol lo 14 
prompted a study o f  the observation t o  determine the  under ly ing cause 
o r  causes. Deta i led analysis appears t o  i nd i ca te  t h a t  the software 

2-1 



changes had only secondary effects and the primary causes were differences 
i n  the RCS/GTS/slosh interaction f o r  Apollo 14 during P63 and fewer 
redesi gnates , 1 ess manual i n p u t s  and a small er p i  tchover maneuver f o r  
Apollo 14 during P64. 

An anomaly i n  the landing radar subsystem d u r i n g  the f i rs t  par t  of 
lunar descent caused some dis tor t ion of the LGC update information. 
Detailed analysis of the update telemetry data indicates actual update 
t o  the LGC a l t i tude a t  the time of lock-on was approximately 870 f t .  

2-2 



3.0 LM IMU PERFORMANCE 

r 

For the best estimate descent trajectory,  LM IMU acceleration 
data were integrated from an i n i t i a l  RTCC vector prior t o  s t a r t  of 
ullage t o  time of touchdown. 
re la t ive  velocit ies i n  a l l  directions a f t e r  touchdown, the following 
LM IMU errors were assumed: 

I n  order t o  null the lunar surface 

Error Source 
Error Ratio 

Arc Sec Error/la 

Platform misalignment about Y ( 4  ) - 57 0.28 Y 
Z accelerometer misalignment toward X (ZXMSL) -43 2.1 

Y accel erometer misal ignment toward Z (YZMSL) -10 0.5 

As shown, the error  sources are well within the 30 design uncertainty 
and are consistent w i t h  errors recovered on previous missions. 

U t i  1 i zi ng the corrected LM IMU data, reconstructed touchdown 
coordinates compare favorably w i t h  the post-mission best estimate 
coordinates, as derived from P20 SXT tracking, P22 R R  tracking and 
1 unar surface a1 ignments. 

Lati tude (Deg) Longitude (Deg) Radius ( f t )  

Reconstructed -3.650 -17.489 5697 11 0 

Best Estimate Post-mission -3.674 -1 7.478 5696826 

i 

LM IMU PIPA biases were s table  throughout the periods of LM 
ac t iv i ty  and required no inf l igh t  updating. A history of biases is  
shown i n  Table 3.1. The only s e t  of biases which d i f f e r  s ignif i -  
cantly from the others were those measured shortly a f te r  IMU powerup 
on the lunar surface. A continuous monitoring of the instruments i n  
this time period indicates the biases require a t  l eas t  one hour t o  
s e t t l e  i n  on the i r  pre-shutdown b ia s  levels. 

3-1 
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4.0 AGS ASA PERFORMANCE 

4.1 Gyro Er ro r s  

c 

i 

4.1 . 1 Free F1 i g h t Performance 

Gyro b i a s  d r i f t  was measured four  times dur ing  the mission us ing  
the onboard c a l i b r a t i o n  programs and i n  a d d i t i o n ,  differences between 
AGS determined body a t t i  tude and PGNCS determined body a t t i  t ude  were 
computed a t  var ious  o t h e r  times from p o s t f l i g h t  da t a .  The divergence 
r a t e  i n  the AGS and PGNCS body a t t i t u d e  comparisons was interpreted a s  
AGS gyro d r i f t .  Table  4.1 p re sen t s  t he  gyro d r i f t  h i s t o r i e s  f o r  
Apollo 14. 

The X gyro b i a s  was well behaved throughout the mission w i t h  
observed f l u c t u a t i o n s  e a s i l y  w i t h i n  design limits and well w i t h i n  the 
range o f  performance observed on previous missions.  The Y gyro b i a s  
was somewhat n o i s i e r  than usual; i n  p a r t i c u l a r  the 0.23'/hr sh i f t  
between the i n f l i g h t  c a l i b r a t i o n s .  The second i n f l i g h t  c a l i b r a t i o n  
was poss ib ly  degraded due t o  higher  than a l lowable  v e h i c l e  rates o r  CDU 
swi t ch ing  t r a n s i e n t s .  
of  the moon, d a t a  a r e  not  a v a i l a b l e  t o  determine the cause.  
subsequent missions,  new procedures have been recomnended f o r  infl i g h t  
c a l i b r a t i o n s  which  should a s su re  v a l i d i t y  of the c a l i b r a t i o n  da ta .  

Si nce the ca l  i b r a t i  on was conducted on the backside 
For 

A definite problem e x i s t e d  i n  the Z gyro,  f i r s t  evidenced by a 
l a r g e  sh i f t  between the prelaunch d a t a  and the f i rs t  i n f l i g h t  c a l i b r a t i o n .  
The gyro b i a s  sh i f t  d i d ,  however, remain w i t h i n  f a i l  limits b u t  the b i a s  
va lue  continued t o  grow and never d id  s t a b i l i z e .  
t i g a t i o n  by the ASA manufacturer f a i l e d  t o  uncover a cause  f o r  the gyro  
problem. A survey of h i s t o r i c a l  d a t a  on the ASA e l e c t r o n i c s  and gyro 
i tself  provided no clues a s  t o  w h i c h  p a r t  of the gyro loop should be 
suspec ted .  Due t o  the i n a b i l i t y  t o  isolate the cause  no c o r r e c t i o n  
a c t i o n  is being considered.  

A thorough inves- 

4- 1 



4.1.2 Powered F l i g h t  Performance 

AGS and PGNCS body a t t i t u d e  comparisons were run f o r  both descent 
and ascent and are shown i n  Figures 4-1 through 4-6. Because o f  the  noise 
associated wi th  the di f ferences, p r i m a r i l y  the  r e s u l t  o f  the  40 arc  second 
g ranu la r i t y  assoicated w i th  PGNCS gimbal angles and i n t e r p o l a t i o n  noise 
induced by s izable LM body rates,  the di f ferences were smoothed by using 
a 40 second moving t h i r d  order polynominal f it. 
smoothing, the two axes w i t h  the h ighest  amplitude l i m i t  cycle,  Y and Z, 
e x h i b i t  considerable f l  uctuations and noise dur ing the burn phases. With 
reasonable confidence however, quan t i t a t i ve  judgements can be made about 
the gyros from the p lo t s .  An average t o t a l  d r i f t  i s  recoverable from the  
data by measuring the change i n  angular e r r o r  between i g n i t i o n  and cu to f f .  
The d i f ference between the average t o t a l  d r i f t  dur ing the burn and res idual  
d r i f t  observed e i t h e r  p r i o r  t o  the burn o r  a f t e r  c u t o f f  i s  considered the  
dynamic d r i f t  i n  t h i s  analysis. 
executed dur ing the burn help i s o l a t e  various system errors .  

Even w i t h  the subs tan t ia l  

I n  addi t ion,  known veh ic le  maneuvers 

I n  reviewing Figure 4-1, a d e f i n i t e  step change i n  the  X d i r e c t i o n  
occurs a t  the t ime the vehic le  pi tches over upon entrance t o  the  approach 
phase program (P64). I f  the PGNCS system i s  assumed a per fec t  reference, 
such a step change would be caused by AGS a t t i t u d e  misalignment, X gyro 
i npu t  ax is  misalignment o r  a combination o f  both. Since the  observed X 
ax is  step would r e s u l t  i f  the Z ax is  a t t i t u d e  reference were misal igned by 
325 arc seconds (based on the s ize  o f  the  p i t c h  maneuver) and the Z ax is  
channel ac tua l l y  shows an AGS a t t i  tude misalignment o f  approximately 
400 arc  seconds ex i s t i ng  a t  the t ime o f  the  maneuver, i t  can be concluded 
t h a t  the X e r ro r  i s  p r imar i l y  the r e s u l t  o f  Z ax is  a t t i t u d e  reference 
misalignment. The remaining 75 arc seconds can eas i l y  be a t t r i b u t e d  t o  
uncer ta in ty  i n  the data and cannot be p o s i t i v e l y  associated w i th  any 
s i  ngl  e e r r o r  source. 

A smaller step change i s  a lso  r e f l e c t e d  i n  the Z ax is  a t  the entrance 
t o  P64 (Figure 4-3) and i s  due t o  a misalignment o f  the a t t i t u d e  reference 
about the  X axis. I 4- 2 



For the descent comparisons (Figures 4-1 through 4-3) the average 
total  drifts  through the powered phase have been designated on the plots 
by a dashed l ine.  Shown below are the dr i f t  values leading t o  a dynamic 
d r i f t  estimate. 

c 

Ir 

X O.lO"/hr  
Y 0.12"/hr 
Z 0.29"/hr 

0.49"/hr 0.39"/ hr 
0.25"/hr 0.1 3"/hr 
0.73"/hr 0.44"/ hr 

A summary of a l l  the recovered gyro errors estimated f o r  descent are shown 
i n  Table 4.2 along w i t h  the preflight estimates for  these errors.  All are 
easi ly  w i t h i n  the 3a preflight estimate except the Z gyro error.  As 
previously discussed, the Z gyro bias was unstable and continued t o  grow 
dur ing  descent. The growth i n  the s t a t i c  bias between ignition and 
touchdown i s  inseparable from the dynamic dr i f t ,  b u t  was def ini te ly  present 
and unreal i s t i  cal ly increased the size of the dynamic e r ror  estimate. 

For the ascent comparisons (Figures 4-4 through 4-6) again the 
average total  drifts through the powered phase have been designated on 
the plots by a dashed line. The pulse exhibited i n  the X axis trace 
shortly a f t e r  l i f t o f f  i s  the resu l t  o f  a t i m i n g  error  i n  the data and 
a h i g h  X axis body ra te  w h i c h  existed for the duration of the pulse. 
body ra te ,  determined from DAP data, was a t  an average value of -.135"/sec 
for  approximately 20 seconds. 
d u r i n g  t ha t  period, an estimated timing error  of 36 ms was calculated. 
Analysis of the LGC and AEA clock values a t  the same time revealed a 
K-factor e r ror  of 30 ms. A K-factor error of 50 ms o r  greater i s  required 
before an update is considered. Velocity comparison data substantiated 
the t iming  error. The low frequency oscil lation most evident i n  Y and Z 
and t o  a lesser  degree i n  X d u r i n g  the ascent b u r n  are  probably the resu l t  
of imperfect syncronization between the two data sources and a low frequency 
modulation on the body r a t e  l imit  cycle. Because of  the difference i n  DAP 
control axes(U' and V ' )  and LM body axes and because of different  limit 
cycles on each control axis an expected growing and s h r i n k i n g  of the 

The 

Based on the s ize  o f  the error  developed 



I 
1 

I 
I 

body r a t e  amplitudes occurs. 
d i f f e rence  p l o t s  w i l l  be most severely affected when the  body ra tes  are 
the  highest causing the  apparent growing and then r e t r e a t i n g  t o  the  steady 
s t a t e  e r ro r ,  Shown below are the  d r i f t  values leading t o  an estimate of 
the  dynamic d r i f t  f o r  the  ascent burn. 

I f  a t im ing  e r r o r  ex is ts ,  t he  a t t i t u d e  
I 

I 

I 

Aver age 
Dynami c D r  i f t 

( B )  
Tota l  D r i f t  

Measured During 

(A )  
I 

Residual S t a t i c  * 
D r i  f t Measured 

Gyro Post Ascent Ascent (B-A) 

I 
X .07 0.12 .05 
Y . O l  -0.19 -.20 
2 .08 0.13 .05 

~ A sumnary o f  a l l  the recovered gyro er ro rs  estimated f o r  ascent are shown 
i n  Table 4.2 along w i t h  the p r e f l i g h t  estimates f o r  these errors. A l l  a re 
e a s i l y  w i t h i n  the  3a p r e f l i g h t  estimates. 

* 
Table 4.1 Column (8) Minus Column (7) 
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Table 4.2 Gyro Bias E r r o r  Sumnary (deg/hr) 

Gyro f i x e d  d r i f t  X 
Y 
Z 

X gyro sp in  ax is  
mass unbalance 

Gyro dynamic d r i f t  X 
Y 
Z 

Tota l  (deg/hr) X 
Y 
Z 

Descent 
ASA 021 

Pre f  1 i gh t Estimate 
Mean 3 a 

0 0.45 
0 0.46 
0 0.46 

0 0.21 

0.02 0.29 
0.12 0.30 

0.31 0.12 
0.02 0.57 
0.12 0.55 
0.12 0.56 

- - 

ASA 021 
I n f  1 i gh t Estimate 

0.10 
0.12 
0.29 

0.39* 

0.13 
0.44 
0.49 
0.25 
0.73 

- 

Gyro f i x e d  d r i f t  X 
Y 
Z 

X gyro sp in  ax is  
mass unbalance 

Gyro dynamic d r i f t  X 
Y 
Z 

To ta l  (deg/hr) X 
Y 
Z 

Ascent 
ASA 021 ASA 021 

P r e f l i g h t  Estimate I n f l i g h t  Estimate 
Mean 30 

0 0.42 .07 
0 0.41 .01 
0 0.41 .08 

0 0.64 

0.02 0.26 
0.05* 

0.10 0.30 -0.20 
0.05 0.10 

0.02 0.88 0.12 
0.10 0.54 -0.19 
0.10 0.63 0.13 

- 0.37 - - 

* 
P o s t f l i g h t  data i s  n o t  s u f f i c i e n t  t o  separate X gyro s p i n  ax i s  mass 
unbalance and X gyro dynamic d r i f t .  
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4.2 Accelerometer Errors 

4.2.1 Free F l i g h t  Bias Stabi l i ty  

AGS accelerometer biases determined throughout the mission are 
presented i n  the table below and show acceptable long and short term 
s t ab i l i t y .  

Rev. 14 Rev. 31 
Preflight Docked IFC Undocked IFC Pre PDI Post Insertion 
Data Mean 103:25 AET 104:54 AET 107:44 AET 142:02 AET 

X 356 llg 31 1 31 1 27 5 193 
Y 49 llg 0 31 23 19 
z - 20 llg - 62 - 62 - 61 -105 

4.2.2 LM Descent Vel oci ty Comparisons 

Sensed velocity residuals ( i n  body coordinates) between AGS and 
corrected PGNCS measurements are shown i n  Figures 4-7 through 4-9. The  
s ign  of the residuals is  defined by 

PGNCS sensed velocity increments were transformed t o  body CO- 

ordinates and summed a t  a one second rate i n  order t o  form a baseline 
for AGS comparison. 
so tha t  AV i s  not dependent on ei ther  AGS or PGNCS gyro errors.  
poor data quality the comparisons were terminated a t  PDI p lus  424 seconds 
(108:09:30 AET). The sudden steps i n  the AV, residual curve a t  fu l l  
throttle p o i n t  (108:02:52 AET) and a t  t h ro t t l e  recovery (108:08:47 A E T )  
are  the resul t  of a t i m i n g  error i n  the data of approximately 60 ms. In 
order to  arrive a t  a s e t  of instrument errors which reasonably explain 
the residual curves, i t  i s  useful t o  examine the correlation coefficients 
fo r  the error terms i n  the AGS model. The AGS accelerometer modeled 
error terms are defined i n  Table 4.3. The following correlation matrix 
was generated from a nominal covariance matrix derived from the AGS 
Performance and Interface Specification. 

PGNCS CDU angles were used for  the transformation 
Due t o  

. 

4 
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Table 4.3. LM AGS Error Model (Accelerometer) 

Mnemon i c Descri pti on 

XAB 
YAB 

2 AB 
XASF 
XAMTY 
XAMTZ 
YPMTX 
YASF 
YAMTZ 
ZAMTX 
ZAMTY 
ZASF 
T B  

X accelerometer bi as 
Y accelerometer bias 
Z accelerometer bi as 
X accelerometer scale factor 
X accelerometer misalignment toward Y 
X accelerometer misalignment toward Z 
Y accelerometer misalignment toward X 
Y accel eroxter scale factor 
Y accelerometer misalignment toward Z 
Z accelerometer misalignment toward X 
Z accelerometer misalignment toward Y 
Z accelerometer scale factor 
Accelerometer timi ng bias 
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Matrix of AGS Error Correlation Coefficients 
LM Descent Trajectory 

- XAB - YAB - ZAB - XASF YAMTX ZAMTX - TB 
1 0 0 -.98 0 0 - .21 XAB 

1 0 0 -.99 0 0 YAB 
1 0 0 -.99 0 ZAB 

1 0 0 .11 XAS F 
1 0 0 YAMTX 

1 0 ZAMTX 
1 TB 

Correlation coefficients vary between "-1 and +1 ,'I and are 
indicators of the interdependence of solution parameters. As a correla- 
t ion coefficient approaches 51, the associated interrelationship of 
two parameters becomes most pronounced; as i t  approaches zero, the 
mutual influence vanishes. 
The following conclusions are evident a f te r  inspection of the above matrix. 

1 )  Dynamic bias and scale factor for the X-accelerometer 
cannot be separated b u t  t iming  error is  separable from 
these effects .  

2) Dynamic bias and Y misalignment toward X are inseparable. 

3)  Dynamic bias and Z misalignment toward X are inseparable. 

, The method of grouping inseparable errors i s  somewhat arbitrary.  
In the table below X-accelerometer s t a t i c  bias ,  dynamic bias ,  and scale 
factor have been grouped into XAB; Y and Z-accelerometer dynamic bias 
and sensing axis misalignment have been grouped i n t o  YAMTX and ZAMTX 
respectively. The error magnitudes shown are the resul t  of a weighted 
leas t  squares f i t  of s t a t e  errors t o  the velocity residual da ta .  The 
s t a t i c  biases YAB and ZAB were determined from free f l i gh t  da t a  prior 
t o  P D I  and were fixed i n  the solution. 
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Recovered Error Terms 
for  Descent Descri p t i  on Error Magnitude 

XAB1 

YAB 

ZAB 

YAMTX 

ZAMTX 

TB 

X accelerometer Dynamic -32 llg 
bias and scale factor 
error 

bias 

bias 

toward X and Y accelerometer 
dynamic bias 

toward X and Z accelerometer 
dynamic b i  as 
Timing  error -0.06 sec 

Y accelerometer s t a t i c  

Z accelerometer s t a t i c  

Y accelerometer m i  sal ignment 

-18.7 F\ g 

0.9 F\ 9 

34 STC 

Z accelerometer m i  sal ignment - 70 c c  

Note : In addition, s t a t i c  bias of -36.4 Vg determined from pre-PDI 
f ree  f l i g h t  data was included i n  the so lu t ion .  

Velocity residual s t a t i s t i c s  a f t e r  the leas t  squares f i t  are indicators 
of the goodness of the f i t .  The difference between the standard deviation 
and the measurement noise estimate is an indicator of the effects  of 
unmodeled errors (including residual PGNCS errors) .  The principal sources 
of measurement noise were investigated and predicted t o  be as follows: 

RMS Error-ft/sec 
AGS Quantization 

PGNCS Quantization 

I nterpol a t  i on Noi se  Insignificant 

The velocity residual s t a t i s t i c s  below indicate the actual measurement 
noise was w i t h i n  the predicted and a reasonable f i t  t o  the AGS modeled 
errors was accompl ished . 

Measurement Standard Dev i a t  i on Measurement Noise 
Channel f t / sec  Estimate f t / sec  

X .05 .02 
Y .06 .02 
Z .13 .02 

4-1 0 



4.2.3 Ascent Velocity Comparisons 

Sensed velocity residuals ( i n  body coordinates) between AGS and 
corrected PGNCS are shown i n  Figure 4-10 through 4-12. CDU angles were 
used t o  rotate  PGNCS sensed velocity increments into body coordinates so 
that  the AGS-PGNCS AV residuals are not dependent on gyro d r i f t  errors.  

Examination of the residual plots a f t e r  o rb i t  insertion 
(141:52:54 AET) indicates no s t a t i c  accelerometer bias fo r  the Y 
or Z instruments. A small bias error of -35 pg  was indicated fo r  the 
X instrument. The sudden s tep i n  the A V ~  curve a t  insertion indicates 
a small t iming error.  

The residual curves during powered f l i g h t  a re  due principally to  
dynamic and/or sensing axis misalignment errors.  Again, i n s i g h t  in to  
which terms i n  the AGS e r ror  model should be examined is gained from 
inspection o f  the correlation coefficients so a correlation matrix was 
derived i n  a manner similar to  that  described fo r  descent. The correla- 
t ion matrix is  as follows: 

Matrix o f  AGS Error Correlation Coefficients 
LM Ascent Trajectory 

, 

TB - XAS F YAMTX ZAMTX - ZAB - YAB - XAB - 
1 0 0 -.96 0 0 .23 XAB 

1 0 0 -.98 0 0 YAB 
1 0 0 -.81 0 ZAB 

1 0 0 -.14 XASF 
1 0 0 Y AMTX 

1 0 ZAMTX 
1 TB 

The same conclusions arrived a t  f o r  descent as t o  separable and 
inseparable errors are  valid for ascent. As for  descent a somewhat 
arbi t ra ry  grouping of the inseparable errors was chosen and i s ref 1 ected 
i n  the table below. The  error magnitudes obtained are  the result of a 
weighted leas t  squares f i t  of  s t a t e  errors t o  the velocity residual data. 
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Recovered Error Terms 
for  Ascent Descri p t i  on Error Magh tude 

XABl X accelerometer dynamic bias -88 u g  
and scale factor  error  

Y AMTX Y accelerometer m i  sal  i gnment 40 
erome t e r  

ZAMTX 

TB 

toward X and Y acce 
dynamic bias 

Z accelerometer misal 
toward X and Z acce 
dynamic bias 
Timing error  

gnmen t -112 s c  
e rome t e  r 

-0.03 sec 

Note 1 :  In addition, s t a t i c  bias of -35 pg determined from post 
insertion data was included i n  the solution. 

Velocity residual s t a t i s t i c s  a f t e r  the l ea s t  squares f i t  are 
quite good as evidenced i n  the following table. 

Measurement Standard Deviation Measurement Noise Estimate 
Channel f t /sec f t / s ec  

X .28 .08 
Y .12 .05 
Z .32 .06 

The  difference between the sample standard deviation and the 
measurement noise estimate is  a measure of the effects  of unmodeled 
errors.  

4.2.4 Comparison t o  Preflight Performance Estimates 

Since individual error terms fo r  each accelerometer are not 
fu l ly  separable, i t  is necessary t o  derive a single performance index 
from the premission performance estimate t o  allow comparison w i t h  the i n -  
f l i g h t  results.  This performance index represents a composite of s t a t i c  
and dynamic errors and sensing axes misalignments. 
the terms, a l l  the non-bias errors were converted to  equivalent accelera- 
tion errors and expressed i n  terms of vg.  
because the ratios of the par t ia l s  fo r  the errors mentioned above are 
f a i r l y  constant through the descent and ascent t ra jector ies .  

In order to  combine 

(Note: T h i s  is  possible only 

T h i s  fac t  
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is a l so  the reason for the h i g h  da t a  correlation between these errors.) 
Premission performance estimates for  ASA-021 are shown i n  Table 4.4 and 
4.5 along w i t h  the AGS recovered errors, converted t o  equivalent p g ,  from 
the descent and ascent velocity comparisons. All the inf l igh t  errors are  
w i t h i n  the 3~ p r e f l i g h t  estimates indicating normal behavior o f  the 
accelerometer instruments dur ing  powered f l igh t .  

Table 4.4 Descent Equivalent Accelerometer Bias Errors (pg) 
b 

Axis - Error Source 

ASA-021 
ASA-021 Prefliaht Estimate 

3a - Inflight Estimate Mean 
Bias, nonl i neari ty  and -25 102 X dynamic errors 

72 
Total  -1 23 - 9  126 

- 16 - Scale factor 

Bias, nonl i neari ty  and 
dynamic errors 
Internal sensing axis y alignment 

-1 0 87 

38 36 

195 

Total 63 28 21 6 

- ASA alignment t o  navigation 0 
base* 

Bias, nonl i neari t y  and 
dynamic errors 
Internal sensing axis Z alignment 

6 87 

- 24 12 
195 

Total -1 75 -1 8 21 3 

- ASA alignment t o  navigation 0 
base* 

* 
V3lue taken from LM AGS capability estimate. 
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Table 4.5 Ascent Equivalent Accelerometer Bias Errors  (pg) 

Axis - Error  Source 

ASA- 02 1 
ASA-021 P r e  f 1 i q h t Es ti ma t e  

I n f l i g h t  Estimate Mean 30 
Bias, nonl i near i  t y  and -25 102 

Scale f a c t o r  12 54 

Tota l  - 68 -1 3 114 

B i  as, nonl i near i  t y  and -10 87 
dynamic e r ro rs  

x dynamic er ro rs  

In te rna l  Sensing Axis Y alignment 
30 30 

ASA alignment t o  navigat ion 0 156 
base * 

Tota l  24 20 180 
- 

Bias, nonl i near i  ty  and 
dynamic e r ro rs  
In te rna l  sensing ax is  Z alignment 

6 87 

-1 9 9 

ASA alignment t o  nav igat ion 0 156 
base * 

Tota l  -88 -1 3 180 

* 
Value taken from LM AGS c a p a b i l i t y  estimate. 
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Figure  4-1 AGS Minus PGNCS Body 
Angle D i f f e r e n c e  
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11% AET (HR:MIH:SEO 

F i g u r e  4 - 2  AGS Minus PGNCS Body 
Angle D i f f e r e n c e  
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Figure  4-3 AGS Minus PGNCS Body 
Angle D i f f e r e n c e  
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F igure  4-4 AGS Minus PGNCS Body 
Angle D i f fe rence  
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TIME AET (HR:HlN:SECl 

F i g u r e  4-5 AGS Minus PGNCS Body 
Angle D i f f e r e n c e  

1 - 2 3  



TIME AET (HR:MIN:SECl 

Fiqure  4-6 AGS Minus PGNCS Body 
Angle D i f f e r e n c e  
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Figure 4-7 Apollo 14 AGS-PGNCS Velocity 
Residuals (LM Descent) 
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Figure 4-8 Apol lo 14 AGS-PGNCS Ve loc i t y  
Residuals (LM Descent) 
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Figure 4-9 Apollo 14 AGS-PGNCS Velocity 
Residuals (LM Descent) 
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Figure  4-10 Apol lo  14 AGS-PGNCS V e l o c i t y  
Residuals (LM Ascent) 
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Figure 4-11 Apol lo 14 AGS-PGNCS V e l o c i t y  
Residuals (LM Ascent) 
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Figure 4-12 Apollo 14 AGS-PGNCS Velocity 
Residuals (LM Ascent) 
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5.0 LM DIGITAL AUTOPILOT 

The Luminary I D  (Rev. 5) D i g i t a l  Au top i l o t  was implemented i n  the 
LM Guidance Computer f o r  the Apollo 14 mission. 
the powered descent and ascent were performed and are summarized below. 

Detai led analyses o f  

Descent 

The sequencing through the lunar descent programs was nominal and 

Slosh a c t i v i t y  became evident i n  P63 approximately 
the t ime durations o f  each phase o f  descent compared wel l  w i t h  the 
Apol lo 12 descent. 
270 seconds i n t o  the descent burn, which corresponded wel l  w i th  the 
behavior i n  previous lunar  descents. The Apollo 14 slosh frequency was 
s l i g h t l y  less than t h a t  observed i n  previous missions. The RCS pro- 
p e l l a n t  usage dur ing P63 and P64 f o r  Apollo 14 (14.89 l b s )  was approxi- 
mately h a l f  o f  the amount used i n  the Apollo 12 mission (32.01 l b s )  and 
i s  explained as fo l lows: 

P63 - The t o t a l  RCS propel lant  consumption during P63 was 7.06 lbs.  
This i s  low i n  comparison wi th  15.66 l bs  f o r  Apollo 12. A 
p l o t  o f  RCS propel lant  consumption during powered descent 
i s  given i n  Figure 5-1. A comparison o f  the RCS propel lant  
consumption per axis during P63 i n  Apollo 12 and 14 indicates 
t h a t  a major por t ion of the t o t a l  reduct ion i n  Apollo 14 l i e s  

i n  U '  axis. O f  the t o t a l  reduction of 8.60 lbs, the breakdown 
i s :  6.54 l bs  i n  U '  axis, 2.00 l b s  i n  V I  axis, and 0.06 l b s  
i n  P axis. The a t t i t u d e  error  and r a t e  e r r o r  i n  Apollo 12 
and 14 i n  the U'  axis were compared t o  v e r i f y  t h i s .  
5-2 and 5-3 show the p lo t s  f o r  a corresponding representative 
per iod o f  3 minutes i n  P63 fo r  Apollo 12 and 14, respect ively.  
The maximum peak-to-peak ra te  excursion i s  3.8 deg/sec f o r  
Apollo 12, and 1.6 deg/sec f o r  Apol l o  14. A1 though the 
a t t i t u d e  e r r o r  p l o t s  cannot e a s i l y  be correlated, the r a t e  
e r r o r  p l o t s  substant iate the reduct ion i n  RCS propel lant  con- 
sumption i n  U '  axis. 

Figures 
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Detai led a n a l y s i s  i n d i c a t e s  the lower RCS p r o p e l l a n t  consump- 
t i o n  during P63 on Apollo 14 was a direct  result of reduced 
slosh frequency i n s t a b i l i t y  i n  the Gimbal Trim System Control .  
Slosh amplitudes were about  one-half  a s  l a r g e  a s  t hose  on 
Apollo 12 a t  corresponding times-from-PDI. Although the slosh 
a c t i v i t y  became dominant a t  approximately the same time f o r  
the  Apollo 12 and 14  miss ions ,  RCS/slosh i n t e r a c t i o n  began 
two minutes l a t e r  on Apollo 14 i n  both pitch and r o l l .  The 
DAP es t imated  p i t c h  r a t e s  were p l o t t e d  d u r i n g  the per iod when 
RCS/slosh i n t e r a c t i o n  began on Apollo 12 and compared w i t h  
t he  corresponding per iod s t a r t i n g  a t  PDI + 4 minutes f o r  
Apollo 14. 
almost a s  l a r g e  on Apollo 14 b u t  the composition of the 
s i g n a l s  was different.  
posed of 50% t o  90% s losh .  The Apollo 14 peak r a t e s  were 
only 30% t o  50% s losh  induced. The s losh  diverged very 
rap id ly  during this per iod of the Apollo 12 f l i g h t ,  b u t  on 
Apollo 14 the s losh  d i d  not  d ive rge  and the ma jo r i ty  o f  
RCS f i r i n g s  were i n  response t o  s t eady  s t a t e  r a t e s .  Because 
of the lower s lo sh  component i n  the DAP r a t e s ,  the RCS j e t  
f i r i n g s  were of s h o r t e r  dura t ion  on Apollo 14 and p rope l l an t  
was conserved. Cause f o r  the reduced s losh  was lower fre- 
quency response i n  the Gimbal Trim System. 
System i s  s t a b l e  a t  the low f requencies  and will no t  a l low 
a divergence unless the energy of the system i s  be ing  diverted 
t o  the s l o s h .  The above observa t ions  about the cont ro l  s i g n a l  
i n d i c a t e  t ha t  the Apollo 14  engine a c t u a t o r  was unable t o  
generate s losh  divergence a t  the same r a t e s  a s  the Apollo 12 
ac tua to r .  Actuator  t es t  d a t a  ind ica t ed  the a c t u a t o r  drive 
r a t e  was lower on Apollo 14 than Apollo 12. Therefore ,  a 
slower a c t u a t o r  response appears  t o  be the underlying cause 
of  reduced RCS propel 1 a n t  consumpti on d u r i  ng P63. 

The peak pitch r a t e s  computed by the DAP were 

The Apollo 12 peak r a t e s  were com- 

The Gimbal Trim 
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P64 - The t o t a l  RCS propel lant  required f o r  a t t i t u d e  con t ro l  
during P63 was 7.83 l b s  as against 16.35 l bs  f o r  Apol lo 12. 
Unl ike t h a t  i n  P63, the reduction i n  the RCS propel lant  con- 
sumption i s  almost equal ly d i s t r i bu ted  i n  the three axis. 
A combination o f  the fo l lowing causes accounts f o r  the 
dif ference dur ing P64: 

a) There was s i g n i f i c a n t  a c t i v i t y  i n  a l l  axes 
near the end o f  P64 i n  Apollo 12 due t o  manual 
RHC comnands which were not present i n  Apollo 14. 
This alone i s  estimated t o  account f o r  about 
20% o f  the reduction i n  RCS propel lant  consump- 
t i o n  i n  P64 o f  Apollo 14. 

b)  There were f i v e  redesignations i n  Apol lo 12 
compared t o  one i n  Apollo 14. These f i v e  
redesignates caused considerable j e t  f i r i n g s  
i n  a l l  axes. Yaw axes f i r i n g s  were most pro- 
nounced. It i s  estimated t h a t  the redesigna- 
t ions i n  Apollo 12 and the subsequently induced 
addi t ional  slosh a c t i v i t y  account f o r  about 50% 
o f  the reduced propel lant  consumption i n  P64 o f  
Apollo 14. 

c )  The automatic pi tchover maneuver i n  P64 caused 
greater change i n  p i t c h  r a t e  i n  Apollo 12 
than i n  Apollo 14. (The maximum p i t c h  r a t e  i n  
Apollo 12 was -12.1 deg/sec and t h a t  i n  Apollo 
14 was -10.5 deg/sec). This and the sub- 
sequently induced addi t ional  slosh a c t i v i t y  
are estimated t o  account f o r  about 30% o f  the 
reduction i n  propel lant  consumption. 

The LM DAP performance during P66 def ies exact comparison w i t h  
previous missions because o f  the manual cont ro l  mode and the i nd i v idua l  

.I p i l o t s  choice i n  landing techniques. 
The condit ions observed on the DSKY a t  the entrance t o  P66 were: 

Horizontal Velocity: 34.5 fps 
A1 ti tude Rate: 
A1 t i  tude: 281 ft. 

-11.2 fps 

The maximum estimated rates exclusive o f  the i n t e r v a l  near touch- 
down were : 
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OMEGAP : -4.25 deg/sec 
OMEGAQ : -7.08 deg/sec 
OMEGAR : 4.05 deg/sec 

A t  the time of  touchdown, the es t imated  rates were: 

OMEGAP : -1.37 deg/sec 
OMEGAQ : -2.67 deg/sec 
OMEGAR: -1.27 deg/sec 

These r a t e s  were much sma l l e r  t h a n  the corresponding ones i n  
Apollo 12. 

The t o t a l  RCS p rope l l an t  consumption f o r  a t t i t u d e  con t ro l  dur ing  
P66 was 64.97 l b s .  This compares w i t h  60.25 l b s  f o r  Apollo 12. 

A cons iderable  thrust o s c i l l a t i o n  was observed dur ing  the landing  
phase i n  Apollo 11 and 12 missions.  
f a i l u r e  t o  account f o r  angular  a c c e l e r a t i o n s  i n  the t h r o t t l e  command 
computation. 
r e a l i s t i c a l l y  been 0.08 sec ins t ead  of  the previous va lue  of  0.2 sec, and 
the gain i n  the t h r o t t l e  command computation r o u t i n e  was too  high. 
the above problems were co r rec t ed  i n  the f l i g h t  sof tware  f o r  Apollo 14 
and the t h r o t t l e  commands during P66 revea led  negl i g i  b l  e osc i  11 a t i o n .  
T h u s ,  the LM DAP performance during P66 was nominal and i n  conformity 
w i  t h  the pref l  i gh t  s imula t ion  results. 

The main cause was i d e n t i f i e d  a s  the 

In a d d i t i o n ,  the "descent  engine lag"  cons t an t  should have 

All o f  

Powered Ascent 

Lunar l i f t o f f  and l u n a r  o r b i t  i n s e r t i o n  were accomplished dur ing  
LGC Powered Ascent Program P12. The maximum a t t i t u d e  e r r o r s  and r a t e  
e r r o r s  near  l i f t o f f  were: 

PERROR: -5.15 deg OMEGAP ERROR: 2.61 deg/sec 
U'ERROR: 7.30 deg OMEGAU'ERROR: -3.07 deg/sec 
V'ERROR:  9.45 deg OMEGAV'ERROR: -3.02 deg/sec 
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The CDUY output ind icated a p i  tchover o f  approximately 51.2 
degrees and the pi tchover maneuver lasted f o r  9 seconds. During t h i s  
i n t e r v a l  the maximum p i t c h  r a t e  was 13.21 deg/sec and the maximum 

2 angul a r  accelerat ion was 6.77 deg/sec . Thi s p i  tchover seems smoother 
than t h a t  i n  Apol lo 12 i n  which the same maneuver was performed i n  
5 secs and w i t h  higher p i t c h  r a t e  and angular accelerat ion. 

The ascent burn was performed w i t h  the APS interconnect open 
such t h a t  t he  RCS j e t s  consumed APS propellant. About 71.80 l b s  o f  
APS p rope l l an t  was used by the RCS j e t s  f o r  a t t i t u d e  contro l .  This 
consumption was about 10 l b s  higher than i t s  p r e f l i g h t  estimate. The 
reason was found t o  be a l a rge  r o l l  moment o f f s e t .  Taking t h i s  i n t o  
consideration, the RCS propel 1 ant  consumpti on was nominal . Thus, the 
LM DAP performance dur ing powered ascent was found nominal and sa t i s fac to ry .  

. 

. 
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6.0 LGC UPDATING DURING DESCENT 

6.1 A1 ti tude Updating 

The di f ferences between the LR radar measured a l t i t u d e  and the LGC 
onboard estimate o f  a l t i t u d e  are shown i n  Figure 6-1. The la rge  AH values 
(approximately 1000 ft) shown on the p l o t  a t  lock-on do no t  represent 
s t a t e  vector errors.  The radar range beam took several seconds t o  s e t t l e  
i n  on a reasonable value and f o r  t h a t  reason the f i r s t  few AH values are 
i n v a l i d .  The i n v a l i d  data had no a f f e c t  on the s ta te  vector since the 
astronaut d i d  not  al low updating u n t i l  sometime between 108:09:27.5 AET 

communication during t h a t  i n t e r v a l  precludes precise determination o f  the 
time f o r  s t a r t  o f  updating. 
way between a t  108:09:31.5 AET and i f  the proper weighting coe f f i c i en ts  are 
appl ied t o  the AH data, a t o t a l  a l t i t u d e  update o f  approximately 870 f t  
was appl ied t o  the onboard s ta te  vector before the AH diminished t o  zero 
a t  108:10:0.5 AET ( P D I  plus 454 seconds). 
r e f l e c t e d  i n  a p l o t  o f  a l t i t u d e  determined from onboard s ta te  vectors 
shown i n  Figure 6-2. A t  108:09:31.5 AET when updating s tar ted the a l t i t u d e  
p l o t  shows a departure from i t s  previously establ ished trend r e f l e c t i n g  
a p o s i t i v e  change i n  a l t i t u d e  and r e f l e c t s  an adjustment o f  the descent 
r a t e  as the guidance steer ing returns the spacecraft t o  the desired descent 
t r a j e c t o r y  . 
6.2 Veloc i ty  Updating 

* ( P D I  p lus 421 seconds) and 108:09:35.5 AET ( P D I  plus 429 seconds). Poor data 

I f  i t  i s  assumed the updating s ta r ted  mid- 

The onboard updating i s  s i m i l i a r l y  

Veloc i ty  updating i s  presented i n  Figures 6-3 through 6-5 and was 
computed by ex t rac t i ng  g r a v i t y  e f f e c t s  and accelerometer sensed t h r u s t  
V S 1 d t . y  from each s ta te  vector change between computer cycles. 
from such a so lu t i on  y i e l d  the remaining i npu t  t o  the s t a t e  dur ing descent; 
landing radar updates. The only s i g n i f i c a n t  updating occurred immediately 
a f t e r  radar lock-on. None o f  the channels appeared t o  e x h i b i t  heavy 

The residuals 

d i s t r i b u t i o n s  o f  updates i n  any one d i rec t i on  which substantiates the good 
accuracy o f  the i n e r t i a l  data up t o  the s t a r t  o f  radar updating. Through- 

o u t  the per iod o f  radar updating the data were considerably qu ie te r  and 
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less a c t i v e  then observed on Apollo 12,  w h i c h  is  s i g n i f i c a n t  i n  t h a t  the 
Apollo 14  radar  d a t a  were considered no i se r  due t o  the rougher terrain 
t h a t  the L M  passed over  on Apollo 14. 
goodness t es t  being app l i ed  t o  incoming L R  d a t a  by the LGC is smoothing 
the d a t a  and with minimal effect  on r ea l  information contained i n  the 
s i g n a l ,  since LGC naviga t ion  errors a t  touchdown were less than 0.5 ft/sec. 
Differences between the LGC navigated moon r e l a t i v e  s t a t e  a t  the time of 
touchdown and the l a s t  l anding  r ada r  v e l o c i t i e s  a t  touchdown a r e  shown 
below: 

T h i s  confirms t h a t  the d a t a  

AVx 

Y 
A v  

Av z 
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LGC Minus LR 
(Antenna Coordi na t e s  ) 

0.01 ft/sec 

-0.47 f t / s e c  

0.09 f t / sec  



TIME F R M  PDI (108:02.?6.5 AfT) T IME I N  SECONDS 

Figure 6-1 LR A l t i t u d e  M i n u s  LGC 
A 1  t i  t u d e  

. 



Figure  6-2 A l t i t u d e  Above Landing S i t e  







TIME I N  S€CONDS 

Figure 6-5 LR Veloc i ty  Updates, 
Platform 2 - A x i s  
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